当前位置:首页 » 必看 » 正文

期货量化发展(期货量化交易策略)

3.28 W 人参与  2023年02月14日 07:37  分类 : 必看  评论

期货量化交易编程怎么弄

*** :1、前提是你必须有自己的期货交易账户,每个期货公司都可以开,现在不用出门就可以用手机在线开户。

2、其次,要选择合适的交易软件。其中交易开拓者的软件是更好编程的,很多交易团队基本都在用这个软件。确定账户和交易软件。

3、剩下的就是如何用编程语言编写策略,并将其输入交易软件。编程其实并不难。在程序化交易中,程序化只占程序化交易的30%。好的编程可以简化代码,提高运行速度,增加交易策略的多样性和完整性,实现一些复杂的策略。

4、如果没有这方面的编程能力,可以参加期货交易的相关培训课程。另外70%主要是策略、仓位设置、交易品种选择、程序化交易心态控制、 *** 设置等的组合管理。

拓展资料:

1、 战略的确定。一个成功的量化交易系统的开发过程必须是恰当的。如何找到一个成功的量化交易策略,是构建量化交易体系的基础。无论是基本面还是技术面,都可以用量化的 *** 进行分析,进而得出量化的交易策略。比如,从根本上说,GDP的增长和货币流通量的增加可以用定量的 *** 来分析和描述。技术上,移动平均线和指数 *** ma是物理和化学策略思想的来源。

2、 经典理论。很多量化投资策略思路来源于传统经典投资理论,比如经典商品期货技术分析主要包括技术分析的理论基础、道指理论、图表介绍、趋势基本概念、主要反转形态、持续形态、交易量和仓位兴趣、长期图表和商品指数、移动平均线、摆动指数和相反意见、盘中点图、三点转向和优化点图、艾略特波浪理论、时间周期等等。这些经典理论有的有具体的指标和具体的应用理论,有的只有理论,需要根据理论生成具体的应用指标来完成策略的测试。因此,经典投资理论可以通过量化思维将理论中的具体逻辑量化为指标或事件形成交易信号,通过信号优化检验实现经典理论的投资思路。这种方式可以有效实现经典理论,同时也可以从原有的经典理论中衍生出周边的投资 *** ,是量化策略发展初期的主流模式。

3、 逻辑推理。逻辑学的战略思维大多来源于宏观基础信息,其量化战略思维是通过对宏观信息的量化处理,梳理出符合宏观基础信息的量化模型。典型的量化策略包括行业轮动量化策略、市场情绪轮动量化策略、上下游供需量化策略等。这种策略思路来源非常广泛,数据一般不规范,很难形成标准。目前,许多对冲基金都有类似的想法来生成量化策略产品。

4、 总结经验。经验总结是量化战略思想的另一个主要来源。在使用量化策略交易之前,市场上有大量经验丰富的投资者,其中许多人在长期稳定回报方面表现突出。因此,他们对市场的看法和交易思路成为了量化策略开发者的模仿对象,有经验的交易者也愿意量化一些他们觉得相对固化、能够获得稳定回报的交易策略,最终可以用机器自动交易,只监控交易。这可以大大减少交易中消耗的能量。在这个前提下,出现了一个与经验丰富的交易者合作的量化策略团队。

操作环境:iPad第九代15.1 交易开拓者4.5.2

什么是量化交易?个人如何做量化交易?

;     一、何谓量化交易

      量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。

      量化交易是以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额预期年化预期收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

二、量化交易的发展

      对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。

      据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。

      事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的预期年化预期收益。

      “传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和 *** 的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。

      据华联期货介绍,量化投资主要应用于期货交易、ETF套利、条件选股、权证套利交易等,主流平台包括文华财经、交易开拓者、金字塔,此外Multicharts、龙软、高手、金钱豹、Yesterday等平台在业内的使用也较为广泛。

三、量化交易的特点

      “量化产品的特点就是任何行情阶段都能盈利。”国信证券东莞营业部投资顾问蔡恩侠告诉,量化产品一般都是多空对冲,因此无论牛熊市均能盈利,不过其也有弱点,即牛市跑不赢一般的股票类投资产品,“2007年大牛市,也就30%左右的预期年化预期收益,但2008年大熊市也有15%左右的预期年化预期收益。”

      “资金不会一直朝一个方向直线形地前进,资金增值是一个艰难的曲折前进过程。”莞香资本CEO江国栋则提醒道,回撤即是资金增长行进中的停顿,也可看做是期货交易的机会成本。“因此,必须正确看待策略参数优化结果,不刻意追求更高预期年化预期收益,不过度拟合行情;同时,坚持正确的交易理念和交易 *** ,严格执行和坚持不懈是持续盈利的前提。”

      量化投资的应用涵盖几乎所有金融投资领域,是在计算机和 *** 的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。

期货的量化怎么样

你好,量化交易是未来的趋势,不管是股票量化还是期货量化等等,都是很重要的

量化交易是从自主交易演变而来的,量化交易能够解决人为冲动下单和不知所等等心理因素,所以量化交易的未来很好

量化交易的基础就是一个交易系统,你要有一个好的交易系统才行

什么是量化交易,未来前景如何?知道的讲讲。

量化交易是指借助现代统计学和数学的 *** ,利用计算机技术来进行交易的证券投资方式。在国外的期货交易市场,程序化渐渐地成为主流,国内则刚刚起步。今天我们就来分析一下它的优势和劣势。

量化交易到底有何种魅力?

所谓量化交易,是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,减少投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

量化模型=计算机技术+量化分析师制定策略

在股票市场上,量化交易早不是什么新闻,量化从业人士张威告诉人民创投(ID:renminct),在国外七成的交易都是通过计算机决策的,在国内这个数字也接近五成。

过去的股票市场都是靠交易员手动敲键盘来操作的,难免一失手成千古恨,这种行为被戏称为“胖手指”,相比之下,量化交易则如同点石成金的“仙人指”。量化里最美的童话就是“旱涝保收”,牛市也好,熊市也罢,都能大赚特赚。

传统股市量化中最耀眼的明星莫过于詹姆斯西蒙斯,其一手缔造的大奖章基金自1988成立至2009年西蒙斯退休的这21年间,年平均收益率达到了惊人的46%,即使是2007年次贷危机席卷美国,量化基金遭遇滑铁卢的时代,大奖章基金依然获得了骄人的73%的回报率。

量化投资中常用的策略,包括阿尔法策略,CTA策略和套利策略。阿尔法策略通过选股组合,挖掘超越市场整体表现的投资机会;CTA策略通过追随趋势,追涨杀跌;套利策略利用市场价格差异,空手套白狼。每个量化投资策略都是个黑盒子,它们是量化公司的量化投资的核心竞争力,其他外部人无法知道其中的秘密。

旱涝保收,坐收渔利,这样的“黑科技”让币圈的投资者也分外眼红。一家量化交易企业的创始人这样描述自己转行数字货币量化交易的经历:“两年前,炒币的朋友经常24小时看行情,搞得精神疲惫,问我如何在数字货币领域实现量化、程序化交易。他们提供了一个比较简单初级的模型,希望我在它的基础上扩展改造,增加风险管理模块。”

现在大大小小的数字货币量化交易团队采用的量化策略与传统外汇市场、期货市场用来做套利的策略虽然大体相似,可也玩出了新的花样,搬砖就是一个典型。搬砖学名“配对交易”,是指同类型股票或同股异地股票根据价值分析以及股价相对比例相互置换的一种套利 *** ,由于政策原因,同股异地搬砖并不常见,但在数字货币市场,大大小小的交易所数不胜数,不同交易所之间的价格也常有差异,利用价格差低买高卖,就成为数字货币量化中最简单粗暴的盈利方式。

量化交易的优势

1. 严格的纪律性

量化交易有着严格的纪律性,这样做可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差。一个好的投资 *** 应该是一个“透明的盒子”。我们的每一个决策都是有理有据的,特别是有数据支持的。如果有人质问我,某年某月某一天,你为什么购买某支股票的化,我会打开量化交易系统,系统会显示出当时被选择的这只股票与其他的股票相比在成长面上、估值上、资金上、买卖时机上的综合评价情况,而且这个评价是非常全面的,比普通投资者拍脑袋或者简单看某一个指标买卖更具有说服力。

2. 完备的系统性

完备的系统性具体表现为“三多”。首先表现在多层次,包括在大类资产配置、行业选择、精选个股三个层次上我们都有模型;其次是多角度,量化交易的核心投资思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;再者就是多数据,就是海量数据的处理。人脑处理信息的能力是有限的,当一个资本市场只有100只股票,这对定性投资基金经理是有优势的,他可以深刻分析这100家公司。但在一个很大的资本市场,比如有成千上万只股票的时候,强大的定量化交易的信息处理能力能反映它的优势,能捕捉更多的投资机会,拓展更大的投资机会。

3. 妥善运用套利的思想

量化交易正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。定性投资大部分时间在琢磨哪一个企业是伟大的企业,那个股票是可以翻倍的股票;与定性投资不同,量化交易大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。

4. 靠概率取胜

这表现为两个方面,一是定量投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用。二是在股票实际操作过程中,运用概率分析,提高买卖成功的概率和仓位控制。

量化交易的风险性

首先是一二级市场“级差”风险,其次是交易员操作风险,最后是系统软件的风险。

一二级市场的“级差”是整个套利交易的核心。在现有规则下,ETF套利模式分为两种:一种是通过购买一揽子票,按照兑换比例在一级市场换得相应的ETF份额,然后在二级市场上将ETF卖出;另一种则与前者相反,是在二级市场上购买ETF份额,通过兑换比例换得相应数量的股票,然后在二级市场卖出股票。交易的顺序视股票价格、兑换比例、ETF份额交易价格的变动而决定。

由于股价的变动,ETF套利级差转瞬即逝,因此纷繁复杂的计算过程,目前业内由计算机完成,交易员通过设定计算程序并按照结果决定策略,又或者完全自动让系统在出现套利空间时自动交易,后者便称之为程序化交易。

又因为套利的空间非常小,通常只有万分之几,因此套利交易为了获取适中的收益,参与的资金量都比较大。如果交易员把握不当顺序做反,则投资将出现亏损,这便是级差风险。而为了控制这样的人为风险,券商一般提倡自动化交易,方向由计算机把握,交易员输入交易数量即可。

第二种风险是交易员操作失误,比如光大这次的乌龙指事件,有可能是交易员在输入数量的时候出现了失误。这同时也牵扯到第三种风险,系统软件风险,每个交易员在系统中都有相应的交易权限,包括数量、金额。光大本次涉及的金额坊间一度传闻为70亿元,而数量如此巨大的金额是如何绕过系统权限完成交易的?这个问题的暴露,也导致业内质疑光大风控并未做足。

这个平台犹如币圈的一个缩影,每一个人都心惊胆战地伏在荷官的膝下,聆听骰子撞击的声音,殊不知荷官才是他们中的头号玩家。“职业投资者都知道有庄家”,张威直言。多数的量化平台可能会推出更复杂的止损策略和更出色的套利机制,但除非平台拥有足够雄厚的资本成为游戏的庄家,否则就只有被收割的命运。

量化作为工具,或许无可厚非,但许多数字货币基金以“量化”为名,公开募集资金,行走在法律的边缘。中国人民大学教授赵锡军认为,金融行业和其他行业不同,参与金融活动,动用的是别人的钱,发生风险,别人会有损失,因此 *** 需要更加严格地监管。

量化交易一念天堂,一念地狱。小编在这里希望广大投资者切莫游走在法律的边缘,以身试法,否则等待你的将是法律的制裁

[img]

期货可以用量化交易吗

期货可以使用量化交易,而且量化交易所占的比例越来越高,以基金等大资金账户为主。

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

拓展资料:

量化投资和传统的定性投资本质上来说是相同的,二者都是基于市场非有效或弱有效的理论基础。两者的区别在于量化投资管理是“定性思想的量化应用”,更加强调数据。

量化交易具有以下几个方面的特点:

1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。

2、系统性。具体表现为“三多”。

一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;

二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;

三是多数据,即对海量数据的处理。

3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。

4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。

量化投资技术包括多种具体 *** ,在投资品种选择、投资时机选择、股指期货套利、商品期货套利、统计套利和算法交易等领域得到广泛应用。

量化交易一般会经过海量数据仿真测试和模拟操作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险最小化和收益更大化,但往往也会存在一定的潜在风险,具体包括:

1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。

2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。

3、 *** 中断,硬件故障也可能对量化交易产生影响。

4、同质模型产生竞争交易现象导致的风险。

5、单一投资品种导致的不可预测风险。

为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。

网站首页:期货手续费网-加1分开户(微信:527209157)

本文链接:http://52ol.cn/post/132604.html

期货量化发展  

本站福利推荐!!!

正规期货账户开户!交易所手续费加1分(+0.01元),无条件!无资金手续费要求,享受手续费加1分!

期货开户微信:527209157

或扫描下方二维码添加微信

<< 上一篇 下一篇 >>

Copyright 2012-2024 期货手续费网-加1分开户 网站地图 邮箱:diyijiaoyi@qq.com 微信:527209157 湘ICP备18014167号