个人爱好分享
实际上b-s模型中的n(d1)和n(d2 )实际上指的是正态分布下的置信值
d1={ln(s/x)+[r+(σ^2)/2]*(t-t)}/[σ*(t-t)^0.5],d2=d1-σ*(t-t)^0.5。利用相关数据先计算出d1和d2的值,然后利用正态分布表,找出对应的d1和d2所对应的置信值。
1.bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。
2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式.
3.你要是真心要理解bs模型公式,我可以推荐一本书,姜礼尚的《期权定价的数学模型和 *** 》,老老实实从之一章看到第五章,只挑欧式期权看就够了。
扩展资料:
BS模型是由无风险套利的原则推导得来,其含义就是说如果某个权证的价格偏离了BS模型所计算的值,就有无风险套利的机会出现,而无风险套利的过程将使得权证的价格回归至BS模型所计算的理论值。这里有一个理论基础,即权证作为一种金融衍生产品,其完全可以通过持有一定标的证券和债券的形式复制出来,同时也完全可以通过相反的过程来对冲风险。
BS模型假设
(1)在期权寿命期内,买方期权标的股票不发放股利,也不做其他分配;
(2)股票或期权的买卖没有交易成本;
(3)短期的无风险利率是已知的,并且在期权寿命期内保持不变;
(4)任何证券购买者能以短期的无风险利率借得任何数量的资金;
(5)允许卖空,卖空者将立即得到所卖空股票当天价格的资金;
(6)看涨期权只能在到期日执行;
(7)所有证券交易都是连续发生的,股票价格随机游走。
成立条件
任何一个模型都是基于一定的市场假设的,Black-Scholes模型的基本假设有以下几点:
(1)无风险利率r是已知的,为一个常数,不随时间的变化而改变
(2)标的证券为股票,正股价格S的变化符合随机漫步,但这种随机漫步能够使股票的回报率成正态分布。
(3)标的股票不分红
(4)期权为欧式期权,即到期日才能行权
(5)整个交易过程中,不存在交易费用,没有印花税
(6)对卖空没有如保证金等任何限制,投资者可自由使用卖空所得资金
在我国,当标的证券分红除息时,权证的行权价格也做相应的除息调整,因此不需要标的证券不分红的假设。
不必负担必须卖出的义务。二叉树定价模型是美式期权采用的定价,指期权买方按照一定的价格,在规定的期限内享有向期权卖方出售商品或期货的权利,但区别在于不负担必须卖出的义务。看跌期权又称“空头期权”、“卖权”和“延卖权”。在看跌期权买卖中,买入看跌的投资者是看好价格将会下降,所以买入看跌期权,而卖出看跌期权方则预计价格会上升或不会下跌。
二叉树期权定价模型是一种金融期权价值的评估 *** ,包括单期二叉树定价模型、两期二叉树模型、多期二叉树模型。
1.单期二叉树定价模型 期权价格=(1+r-d)/(u-d)×c/(1+r)+(u-1-r)/(u-d)×c/(1+r) u:上行乘数=1+上升百分比 d:下行乘数=1-下降百分比 【理解】风险中性原理的应用 其中: 上行概率=(1+r-d)/(u-d) 下行概率=(u-1-r)/(u-d) 期权价格=上行概率×Cu/(1+r)+下行概率×Cd/(1+r)
2.两期二叉树模型 基本原理:由单期模型向两期模型的扩展,不过是单期模型的两次应用。 *** : 先利用单期定价模型,根据Cuu和Cud计算节点Cu的价值,利用Cud和Cdd计算Cd的价值;然后,再次利用单期定价模型,根据Cu和Cd计算C0的价值。从后向前推进。
3.多期二叉树模型
原理:从原理上看,与两期模型一样,从后向前逐级推进,只不过多了一个层次。
股价上升与下降的百分比的确定: 期数增加以后带来的主要问题是股价上升与下降的百分比如何确定问题。期数增加以后,要调整价格变化的升降幅度,以保证年报酬率的标准差不变。 把年报酬率标准差和升降百分比联系起来的公式是: u=1+上升百分比= d=1-下降百分比= 其中:e-自然常数,约等于2.7183 σ-标的资产连续复利报酬率的标准差 t-以年表示的时段长度
拓展资料:
期权交易最重要的是权利金价格。期权定价的过程,是根据影响期权价格的因素,通过适当的数学模型,去分析模拟期权价格的市场变动情况,最后获得合理理论价格的过程。由于期权交易中期权市场价格有时会偏离公允价格,无论是一般投资者还是做市商,都需要有自己的判断,利用模型获得较为合理的定价,交易所也需要发布理论上的合理价位供大家参考。 通过定价模型可以给出期权价格的风险指标,从而用于控制投资风险。期权定价模型主要是基于无套利均衡定价理论,基本思想是指如果市场上存在无风险的套利机会,那么市场处于不均衡状态,套利的力量会推动市场重新均衡,而套利机会消除后的均衡价格即是市场的真实价格。
d1实际上指的是正态分布下的置信值,d1={ln(S/X)+[r+(σ^2)/2]*(T-t)}/[σ*(T-t)^0.5],d2=d1-σ*(T-t)^0.5。利用相关数据先计算出d1和d2的值,然后利用正态分布表,找出对应的d1和d2所对应的置信值。
1.BS公式的原始推导过程采用偏微分方程、随机过程中的几何布朗运动性质(描述标的资产)和Ito公式。如果你没有学过随机和偏微分估计,只有火星人能给你解释。如果你想要这种形式,看看二叉树模型。二叉树模型易于理解,可以自己推导。二叉树模型(无限细时间分割)的极限为BS公式。如果你真的想了解BS模型公式,可以看看蒋立尚的期权定价数学模型和 *** 。从第1章到第5章选择欧洲选项就足够了。
2.在该模型中,五种风险利率必须以连续复利的形式存在。简单无风险利率或不连续无风险利率一般每年计算一次,要求R为连续复利利率。R0必须转化为r才能代入上式。两者的转换关系为:r = ln (1 + R0)或R0 = exp (r) - 1。例如,如果R0 = 0.06,则r = ln(1 + 0.06) = 0.0583,即100在第二年以583%的连续复利投资得到106,这与直接用R0 = 0.06计算得到的答案是一致的。
3.BS期权定价模型内容:b-s-m模型假设股票价格随机波动,服从对数正态分布;在期权有效期内,股票资产的无风险利率、预期收益变量和价格波动性均为常数;市场上没有摩擦,即没有税收和交易成本;股票资产在期权有效期内不支付股息和其他收入(这个假设可以放弃);该期权为欧式期权,即在期权到期前不能行使;金融市场不存在无风险的套利机会;金融资产的交易可以继续进行;所有金融资产都可以用于卖空。
拓展资料:期货期权是指期货合同中的期权。期货期权合同是指在期权到期日或到期日之前,以约定的价格买卖一定数量的特定商品或资产的期货合同。期货期权的基础是商品期货合同。当期货期权合约被执行时,它不是由期货合约所代表的商品,而是期货合约本身。
[img]bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式。
你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式。
扩展资料:
期权与期货合约的区别有以下几方面:
(1)两者的标的物不同:
期权:是以50ETF(代码510050)为标的物的一种买卖权利,期权的买方在买入权利后,便取得了选择权。在约定的期限内既可以行权买入或卖出标的资产,也可以放弃行使权利;当买方选择行权时,卖方必须履约
期货:交易的标的物是标准的期货合约;期货主要不是货,而是以某种大众产品如棉花、大豆、石油等及金融资产如股票、债券等为标的标准化可交易合约。因此,这个标的物可以是某种商品(例如黄金、原油、农产品),也可以是金融工具。
(2)当事人的权利义务不同:
期权:期权是单向合约,期权的买方在支付权利金后即取得履行或不履行买卖期权合约的权利,不必承担义务。
期货:期货合约当事人双方的权利与义务是对等的,也就是说在合约到期时,交易双方都要承担期货合约到期交割的义务。持有人必须按照约定价格买入或卖出标的物(或进行现金结算)。
(3)保证金制度不同:
期权:在期权交易中,买方更大的风险仅限于已经支付的权利金,故不需要支付履约保证金。
而期权卖方面临较大风险,因而必须缴纳保证金作为履约担保。而在我们实际操作中多是做为买方,卖方更多的是在机构。
期货:在期货交易中,无论是多头还是空头,持有人都需要以一定的保证金作为抵押。
(4)盈亏与风险不同:
期权:在期权交易中,投资者的风险和收益是不对称的。具体为,期权买方承担有限风险(即损失权利金的风险)而盈利则有可能是无限的,期权卖方享有有限的收益(以所获得权利金为限)而其潜在风险可能无限;所以对于个人投资者来说就不建议做卖方了。
期货:期货合约当事人双方承担的盈亏风险是对称的。
关系:多期二叉树期数越多,计算结果与布莱克-斯科尔斯模型的计算结果的差额越小。
二项式期权定价模型假设股票价格仅在向上和向下两个方向波动,并且股票价格每次向上(或向下)波动的概率和幅度在整个调查期间保持不变。 模型将久期分为几个阶段,根据股价的历史波动率模拟整个久期中正股所有可能的发展路径,并计算出每条路径上每个节点的权证行权收益和通过折现法计算的权证价格 . 对于美式权证,由于可以提前行权,每个节点权证的理论价格应该是权证行权收益和折现后的权证价格中的较大者。
拓展资料:
期权定价模型基于对冲投资组合的思想。投资者可以建立期权及其标的股票的组合,以确保报酬的确定。在均衡情况下,这种确定的回报必须获得无风险利率。期权的固定价格思想与无套利定价思想是一致的。所谓无套利定价是指任何零投资的投资只能得到零回报,任何非零投资的投资只能得到与投资风险相对应的平均回报,而不能得到超额回报(利润超过相当于风险的回报)。从 Black Scholes 期权定价模型的推导不难看出,期权定价本质上是无套利定价的。
假设条件:
1、标的资产价格服从对数正态分布;
2、在期权有效期内,金融资产的无风险利率和收益变量不变;
3、市场无摩擦,即没有税收和交易成本;
4、金融资产在期权有效期内没有股息等收益(此假设后放弃);
5、该期权为欧式期权,即在期权到期前不能执行。
B-S模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权。(一)存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利DT,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S′=S-DT E-rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:C=(S- E-γT N(D1)-L E-γT N(D2)
网站首页:期货手续费网-加1分开户(微信:527209157)
本文链接:http://52ol.cn/post/66067.html
Copyright 2012-2024 期货手续费网-加1分开户 网站地图 邮箱:diyijiaoyi@qq.com 微信:527209157 湘ICP备18014167号