个人爱好分享
预计3个月后。
F0是一件产品终值,S0是另一件产品的现值,这两件是符合无套利定价理论的,外汇期货的定价持有收益率是该外汇发行国的无风险连续利率rF。本国无风险连续利率记为rD。直接标价法下,远期汇率Ft和即期汇率St的关系表示为。外汇期货是在集中形式的期货交易所内,交易双方通过公开叫价,以某种非本国货币买进或卖出另一种非本国货币,并签订一个在未来的某一日期根据协议价格交割标准数量外汇的合约。为了说明方便,我们先把广义的外汇期货交易与狭义的外汇期货交易区别开来。广义的外汇期货交易,包括外汇期货合约交易和外汇期权合约交易二种方式,而狭义的外汇期货则专指外汇期货合约。
外汇期货的主要的内容包括:
①交易单位。
②最小变动价位。
③每日价格更 *** 动限制。
④合约月份。
⑤交易时间。
⑥最后交易日。
⑦交割日期。
⑧交割地点。
[img]债券,股票,期货三类金融市场资产定价模型的原理:
1、资本资产定价模型中,所谓资本资产主要指的是股票资产,而定价则试图解释资本市场如何决定股票收益率,进而决定股票价格。
2、根据风险与收益的一般关系,某资产的必要收益率是由无风险收益率和资产的风险收益率决定的。
3、必要收益率等于无风险收益率加风险收益率。
4、资本资产定价模型的一个主要贡献就是解释了风险收益率的决定因素和度量 *** 。
一年后一美元(S软妹币)带利息为(1+R_f)美元 一年后本来值S软妹币的可以值S(1+R) 所以根据无套利 不管一年前你拿的是美元还是软妹币 今天的价值都一样 所以有关系:F*(1+R_f )= S*(1+ R)
针对布-肖模型股价波动假设过严,未考虑股息派发的影响等问题,考克斯、罗斯以及罗宾斯坦等人提出了二项分布期权定价模型(binomial option pricing model-bopm),又称考克斯-罗斯-罗宾斯坦模型〔(1)e〕。
该模型假设:
之一,股价生成的过程是几何随机游走过程(geometric random walk),股票价格服从二项分布。与布-肖模型一样,在bopm模型中,股价的波动彼此独立且具有同样的分布,但这种分布是二项分布,而非对数正态分布。也就是说,把期权的有效期分成n个相等的区间,在每一个区间结束时,股价将上浮或下跌一定的量,从而:
(附图 {图})
令snj代表第n个区间后的股价,其间假定股价上浮了j次,下跌了(n-j)次,则:
(附图 {图})
第二,风险中立(risk-neutral economy)。由于连续交易机会的存在,期权的价格与投资者的风险偏好无关,它之所以等于某一个值,是因为偏离这一数值产生了套利机会,市场力量将使之回到原先的水平。 假设股票现价为s[0],一个区间后买方期权到期,那时股价或者上升为s[11]或者下降为s[10]即,:
(附图 {图})
根据风险中立的假设,任何一种资产都应当具有相同的期望收益率,否则就会发生套利行为。也就是说此时无风险债券、股票及买方期权的将来价值满足如下关系:
(附图 {图})
上式中,q表示的是股票价格上涨的概率,因而期权的价格乃相当于其预期价格的贴现值。 上述分析可以进一步推广到n个区间的买方期权价格的确定。首先,需计算出买方期权价格的预期值,假设在n个区间里,在股价上涨k次前,买方期权仍然是减值期权,内在价值仍为0,而k次到n次之间,它具有内在价值,则:
(附图 {图})
(附图 {图}) 先前的分析没有考虑股息的存在,假定某种股票每股在t时将派发一定量的股息,股息因子为f,除息日与付息日相同,则在除息日股价将会下降相当于股息的金额fs[t]。
(附图 {图})
对于美式期权,则需考虑提前执行的情况:
在t时若提前执行,其价格等于内在的价值;不执行,则可按前面的推导得到相应的价格。最终t时的价格应当是提前执行与不提前执行情况下的更大者。即:
(附图 {图}) 根据欧洲期权的平价关系,可直接从其买方期权导出卖方期权价格,而美国期权则不能。利用上述推导美国买方期权价格的 *** ,可以同样得到:
(附图 {图})
这就是美国卖方期权的定价公式。从上述bopm模型的推演中可看出其主要特点:
1.影响期权价格的变量主要有基础商品的市价(s),期权协定价格(x),无风险利率(r),股价上升与下降的因子(u,d),以及股息因子(f)及除息次数。事实上u与d描述的是股价的离散度,因而与布-肖模型相比,bopm所考虑的主要因素与前者基本相同,但因为增加了有关股息的讨论,因而在派发股息的期权及美国期权的定价方面,具有优势。
2.根据二项分布的特点,bopm模型中只要对u与d及p作出适当的界定,它就可以回答跳动情况下的期权的定价问题。这是布-肖模型所不能够的。同时,当n达到一定规模后,二项分布趋向于正态分布,只要u、d及p的选择正确,bopm模型会逼近布-肖模型。
与布-肖模型一样,二项分布定价模型也被推广到外汇、利率、期货等的期权定价上,受到理论界与实业界的高度重视。
三、对西方期权定价理论的评价
以布莱克-肖莱斯模型和bopm模型为代表的西方期权定价理论,是伴随着期权交易,特别是场内期权交易的扩大与发展而逐渐丰富与成熟起来的。这些理论基本上是以期权交易的实践为背景,并直接服务于这种实践,具有一定的科学价值与借鉴意义。
首先,模型将影响期权价格的因素归纳为基础商品价格、协定价格、期权有效期、基础商品价格离散度以及无风险利率和股息等,并认为期权价格是这些因素的函数,即:
c或p=(s,x,t,σ,γ,d)
在此基础上得到了计算期权价格的公式,具有较高的可操作性。比如在布-肖模型中,s、x及t都可以直接得到,γ亦可以通过相同期限的国库券收益率而求出,因而运用该模型进行估价,只需求出相应的σ值即基础商品的价格离散度即可。实践中,σ值既可通过对历史价格的分析得到,亦可假定未行使的期权的市场价格即为均衡价格,将相应变量代入求得(此时称为隐含的离散度implicit volatility)。因而操作起来比较方便。同时,这种概括是基于期权的内在特点,把它放在统一的资本市场考虑的结果。其分析触及到了期权价格的实质,力图揭示期权价格“应当是”多少,而不是“可能是”多少的问题,因而比早期的计量定价模型向前迈了一大步。
其次,模型具有较强的实践性,对期权交易有一定的指导作用。布-肖模型以及二项分布模型都被编制成了计算机软件,成为投资者分析期权市场的一种有效工具。金融界也根据模型编制成现成的期权价格计算表,使用方便,一目了然,方便了投资者。正如罗伯特·海尔等所编著的《债券期权交易与投资》一书所言:“(布-肖)模型已被证明在基本假设满足的前提下是十分准确的,已成为期权交易中的一种标准工具。”具体来讲,这些模型在实践中的运用主要体现于两方面:1.指导交易。投资者可以借助模型发现市场定价过高或过低的期权,买进定价过低期权,卖出定价过高期权,从中获利。同时,还可依据其评估,制定相应的期权交易策略。此外,从模型中还可以得到一些有益的参数,比如得耳他值(△),反映的是基础商品价格变动一单位所引起的期权价格的变化,这是调整期权头寸进行保值的一个十分有用的指标。此外还有γ值(衡量△值变动的敏感性指标);q值(基础商品价格不变前提下,期权价格对于时间变动的敏感度或弹性大小),值(利率每变动一个百分点所引起的期权价格的变化)等。这些参数对于资产组合的管理与期权策略的调整,具有重要参考价值。2.研究市场行为。可以利用定价模型对市场效率的高低进行考察,这对于深化期权市场的研究也具有一定意义。
布莱克-斯科尔斯模型2009年08月09日 星期日 20:23布莱克-斯科尔斯模型(Black-Scholes Model,亦有译为布莱克-休斯),简称BS模型,是一种为期权或权证等金融衍生工具定价的数学模型,由美国经济学家迈伦·斯科尔斯与费雪·布莱克所更先提出,并由罗伯特·墨顿完善。该模型就是以迈伦·斯科尔斯和费雪·布莱克命名的。1997年迈伦·斯科尔斯和罗伯特·墨顿凭借该模型获得诺贝尔经济学奖。然而统计学上的肥尾现象影响此公式的有效性。
[编辑] B-S模型5个重要假设
1、金融资产收益率服从对数正态分布;
2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);
5、该期权是欧式期权,即在期权到期前不可实施。
[编辑〕 模型
C = S * N(D1) − e − r * T * L * N(D2)
其中:
C—期权初始合理价格
L—期权交割价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率H
σ2—年度化方差
N()—正态分布变量的累积概率分布函数,
网站首页:期货手续费网-加1分开户(微信:527209157)
本文链接:http://52ol.cn/post/96302.html
Copyright 2012-2024 期货手续费网-加1分开户 网站地图 邮箱:diyijiaoyi@qq.com 微信:527209157 湘ICP备18014167号