个人爱好分享
一、VaR风险测量 *** 风险测量的模型主要有两大类:参数模型和非参数模型。参数模型包括分析法的各类模型,利用了灵敏度和统计分布特性简化了VaR,但由于对分布形式的假定和灵敏度的局部特征,分析法很难有效处理实际金融市场的厚尾性和大幅度波动的非线性问题,因而会产生测量误差以及模型风险。非参数法包括历史模拟法和Monte Carlo模拟法,相对分析法来说,模拟法可以较好地处理非正态问题,是一种完全估计,可有效处理非线性问题。 1.参数法 分析法是VaR计算中最为常用的 *** ,它利用证券组合的价值函数与市场因子间的近似关系、市场因子的统计分布(方差-协方差矩阵)简化VaR的计算。分析法根据证券组合价值函数形式的不同,可分为两大类:Delta-类模型和Gamma-类模型。其中,Delta-类模型识别的是线性风险,Gamma-类模型可识别凸性风险,例如组合中含有期权类的衍生品。本文将采用Delta-类模型中的Delta-正态模型与Delta-GARCH模型进行分析。 2.非参数法 (1)历史模拟法 最简单而又直观的 *** 就是历史模拟法,其核心就是根据市场因子的历史样本变化模拟证券组合的未来损益分布,用给定历史时期上所观测到的市场因子的变化,来表示市场因子的未来变化。然后,根据市场因子的未来价格水平对头寸进行重新估值,计算出头寸的价值损益变化。最后,在历史模拟法中将组合的损益从小到大进行排序,得到损益分布,通过给定置信度下的分位数求出VaR。 (2)Monte Carlo模拟法 由于分析利用了统计分布特征,如果市场存在厚尾性和大幅度波动的非线性问题,则风险测量偏差会比较大。Monte Carlo模拟是反复模拟决定金融工具价格的随机过程,每次模拟都可以得到组合在持有期末的一个可能值,然后进行大量的模拟,那么组合价值的模拟分布将收敛于组合的真实分布,然后根据置信度得到VaR。
[img]商品期货交易在当前中国的经济体系中占据着很重要的作用,投资者都希望从大量的期货交易中获取一定的利润,但是期货交易作为一种投机行为,交易者置身其中往往要承担很大的风险,本文研究了商品期货交易中的一些问题,给出了获取较大收益的交易方式。 问题一:我们首先利用SPSS 中的模型预测 *** 给出了橡胶期货交易各项指标在9月3号这天随时间推移的波动图,又给出了利用Matlab 软件作出的成交价与各个指标的相关性图表。分析所作的图得出的结论是商品期货的成交价与B1价、S1价具有显著相关性,与成交量、持仓增减、B1量、S1量也具有相关性而与总量不具有相关性。最后利用SPSS 软件双变量相关分析进一步确认其相关性指标。为了对橡胶期货价格的这些变化特征进行分类,我们作出了成交价19天的波动图,并以持仓量为例分析其他指标的变化特征,将七项指标分成了上涨和周期波动两类。
问题二:本文采用了回归分析的 *** 建立价格波动预测模型。首先介绍回归分析的基本原理与内容,叙述了回归分析中用到的最小二乘法,之后在之一问的基础上建立回归分析的数学模型,得出函数关系,算得价格的波动趋势并与实际数据对比,再分析模型中的残差数据,验证所建立的回归模型合理性。
问题三:为建立收益更大化的交易模型,本题我们分析价格的波动数据后,借助移动平均线的理论 *** ,再分析价格的“高位”与“低位”,得出买点卖点。建立交易模型后,利用MATLAB 软件分析出合适的交易时机,并画出图形,利用所给数据根据建立的模型计算收益。
金属矿产品市场风险,是指成矿带所在国家的市场条件的不确定引起矿业投资的不确定性。国际矿产品市场兼具实物市场和金融市场的特征,特别是近年来大量资金的涌入,更使其金融的特征加强。金属期货市场上的价格波动,直接反映出投资企业面临或即将面临的风险。外汇市场上的汇率波动,从间接角度也会给投资企业带来风险。由于在国际金属期货市场上,金属期货的价格一般以美元标价,对国内企业来说,要进行国际投资,首先需要把人民币转化为相应的外币,运用外币才能在国际市场上灵活操作。
金属矿产资源价格风险是金属期货交易中最为普遍、最为经常的风险,它存在于每一种期货产品中。这是因为每一种期货产品的交易,都是以对这种产品价格变化的预测为基础的;当实际价格的变化方向或幅度与交易商的预测出现背离时,就会造成相应得损失。
汇率风险又称外汇风险,就是由于汇率波动导致企业以外币计量的筹集资金的价值发生变化的可能性。汇率波动风险,是指由于汇率的波动而给持有或使用外汇的项目公司或其他利益参与者带来损失的风险。项目融资的成本和利润对金融市场上汇率变动比较敏感。首先,本国货币与国际主要货币之间汇率变化的风险将影响其生产成本和费用,同时也会加剧国内市场的竞争,因为国外同类产品的生产者会发现这个市场更具吸引力;其次,各国货币之间的交叉汇率变化也会间接影响到该项目在国际市场上的竞争地位;最后,汇率变化也将对项目的债务结构产生影响。
金属矿产品市场风险度量 *** 分析,主要是借助金融市场风险管理理论,来选用市场风险价值(VaR)作为金属矿产品市场风险测量指标。VaR *** 是由JPMORGAN公司率先提出来的,并在实践中得到了广泛应用。市场风险度量的 *** 有多种,VaR *** 是目前金融市场风险测量的主流 *** 。VaR计算 *** 包括历史模拟法、方差—斜方差法和蒙特卡罗模拟法。与历史模拟法和蒙特卡洛模拟法相比,方差—斜方差法的优点是需要的数据量较少,易于操作,因此在实践中得到了广泛应用。
VaR的优点在于将不同的市场因子、不同市场的风险集成为一个数,较准确地测量由不同风险来源及其相互作用而产生的潜在损失,适应了金融市场发展的动态性、复杂性和全球整合性的趋势。
VaR计算 *** 基本思路是:首先,根据金属矿产品市场风险因素分析市场风险因子的函数;其次,建立预测市场风险因子的波动性模型,预测市场风险因子的波动性;最后,根据市场风险因子的波动性估计市场风险价值和分布,计算出VaR 值。
(1)基于GARCH族模型的VaR计算
1)VaR计算的基本原理。
VaR译为风险价值,是指在市场正常波动下,某一金融资产或证券组合的更大损失。更为确切地说,是指在一定概率水平下和特定的持有期内,某一金融资产或证券组合的更大损失。用数学语言,可以定义VaR为:令α∈(0,1)为某一给定的概率水平,则α水平下,投资组合p的VaR 定义如下
国外油气与矿产资源利用风险评价与决策支持技术
式中:函数
(α)为收益Rp的累积分布函数
的逆函数。VaR的实质为Rp的α-分位数。VaR估计的条件方差 *** 属于动态VaR计算的分析 *** ,在VaR的计算当中,其核心是对波动率的估计。不同的波动率模型构成了VaR 计算的不同。
本书是对伦敦铜和人民币兑美元汇率对数日收益率时间序列进行研究,选取VaR的计算公式:
国外油气与矿产资源利用风险评价与决策支持技术
式中:t表示第t天;Pt-1为上一个交易日的收盘价;zα为标准正态分布的临界值,而1%,5%,10%的临界值分别为-2.33,-1.64,-1.28;σt是由GARCH模型估计得到的收益率序列条件标准差。
2)VaR模型的后验测试。
为检验市场风险计量模型的有效性,需要检验VaR模型的计算结果对实际损失的覆盖程度。本书采用Kupiec检验对所建的模型适合性进行检验。设Ⅳ为检验样本中损失高于VaR的次数,T为检验样本总数,a是既定的显著性水平,f表示失败率。其中:
国外油气与矿产资源利用风险评价与决策支持技术
则检验的假设为
国外油气与矿产资源利用风险评价与决策支持技术
似然比统计量为
国外油气与矿产资源利用风险评价与决策支持技术
在原假设下,LR 服从于自由度为1的X2分布。在大样本条件下,也可以用正态分布来逼近,同样有较好的检验效果。当
(1)时,拒绝H0,VaR模型失败。
3)GARCH(p,q)族模型的基本原理。
金融风险主要是由金融资产价格的波动引起的。大量实证研究发现,金融资产的波动分布具有尖峰厚尾性和波动集聚性,即金融市场波动往往表现出异方差性。1986年Bollerslev在Engle(1982)提出的自回归条件异方差模型(ARCH)基础上,建立了GARCH 模型能够较好地捕捉金融市场风险的这些特性。ARCH 及其以后产生的扩展模型TGARCH、EGARCH等被称为GARCH模型族。目前,基于GARCH族模型对金融市场风险价值(VaR)的研究已经非常丰富。例如,龚锐、陈仲常等(2005);陈守点、俞世典(2007);金秀、许宏宇(2007);丁元子(2009)等。
广义自回归条件异方差模型(GARCH 模型)对各指数的波动性进行分析。具体建模步骤如下:①对收益率序列进行平稳性和自相关性检验;②根据相关系数和Q 统计量进行ARMA模型识别;③建立均值方程,根据残差自相关性检验确定模型拟合效果,并运用LM *** 对序列残差项进行ARCH效应检验;④采用极大似然法进行GARCH模型的参数估计;⑤根据拟合优度统计量评价模型。
A.GARCH模型。
1986年Bollerslev提出GARCH模型。GARCH(p,q)模型的一般公式包括两部分:均值方程形式和方差方程形式。可写为
国外油气与矿产资源利用风险评价与决策支持技术
式中:εt为残差;rt为收益率;αj为GARCH项系数,代表了随机误差项的方差滞后期对当期方差的影响;βi为AHCH项系数,代表前一期随机误差项对即期残差方差的影响程度,刻画了市场对于新的信息的反映;σt为条件方差,刻画了市场的波动性;其中模型参数满足一下约束:c≥0,ω≥0,α≥0,β≥0。
B.TGARCH模型。
Zakoian(1990)及Glosten,Jaganathan和Runkle(1993)提出的TGARCH(门限TGARCH)模型的一般形式为
国外油气与矿产资源利用风险评价与决策支持技术
和GARCH 模型相比,在TGARCH 模型中设立了一个阀值dt-1,用来描述信息的影响。
其中,dt-1是一个名义变量,取0或1;市场上利好或利坏对条件方差的作用效果是不同的。上涨时,εt≥0表示利好消息,则
其影响系数为
下跌时,εt﹤0表示利空消息,则
其影响系数为
如果γ≠0,则说明信息作用是非对称的;如果y﹥0,则认为存在杠杆效应。
另外,以上模型中
,蕴涵GARCH族过程为宽平稳。
4)实证分析。
A.数据来源。
本专题的金属期货的收盘价格采用伦敦期货交易所发布的期铜收盘日收盘价格,用大智慧软件下载。汇率所使用的资料为人民币兑美元的汇率,来自美国联邦储备银行圣路易斯分行联邦储备经济数据库(Federal Reserve Economic Data)提供的统计数据。两者数据选取区间为2005/07/22~2009/09/04日止,其中扣除非营业日及部分交易资料的缺失。对缺失数据的处理,为当日缺失资料的前一天以及后一天的平均来当作当日缺失的资料,一共各1063个数据。
B.收益率序列基本特征分析。
市场收益率采取对数日收益率的形式,定义为
国外油气与矿产资源利用风险评价与决策支持技术
式中:ri,t为第i市场第t日的收益率;pi,t为i市场第t日的价格,i取1时表示期铜市场,i取2时表示外汇市场。收益率序列的主要统计特征如图9.18所示。可以看出均存在波动集聚性和爆发性,可认为两个收益率序列均是随机的。
图9.18 收益率序列的主要统计特征
根据表9.12给出的收益率序列的主要统计特征,由偏度值可知伦敦铜收益率序列是左偏的,人民币兑美元收益率序列是右偏的。两者均具有尖峰厚尾现象,并且汇率市场比期货市场明显。由J-B统计检验知二者均拒绝服从正态分布的假设。由Q(20)和Q2(20)值可知,两者的收益率序列和收益率平方序列均在1%的显著性水平下,拒绝了不存在序列相关性的原假设,即都存在显著的序列相关性,说明波动的集聚性很显著。适合用GARCH模型来建模。
表9.12 两收益率序列的主要统计特征
GARCH模型的参数估计:
a.伦敦铜的更优模型为GARCH(1,1):
国外油气与矿产资源利用风险评价与决策支持技术
b.人民币兑美元更优模型为TGARCH(1,1):
国外油气与矿产资源利用风险评价与决策支持技术
式中:括号内数据表示参数估计的标准差,***表示在99%置信度下显著,**表示在95%置信度下显著;*表示在90%的置信度下显著。
c.VaR的计算与分析。
通过式9.14与式9.15可计算出伦敦铜与人民币兑美元对数收益率序列的条件方差
,从而得到时变的标准差σt,并按照式:
,计算得到VaR。其中,Pt-1为上一个交易日的收盘价;为计算方便,在此标准化为1元。Zα为标准正态分布的临界值,而1%,5%,10%的临界值分别为-2.33,-1.64,-1.28;置信水平为90%,95%,99%下每天的VaR 值,并与实际收益率进行比较,见图9.19。
图9.19 不同置信度下的VaR值与实际收益率的比较
d.采用Kupiec失败率检验对所建的模型进行后验测试。
表9.13 后验测试结果分析
由表9.13可知,从似然比统计量LR值可以看出,在给定的置信水平下都小于临界值,说明所建的VaR模型是合理的。通过α与f比较,可以看出期铜GARCH(1,1)模型预测结果基本覆盖了实际损失,RMB/USD的TGARCH(1,1)模型略微低估了市场风险。
(2)基于历史模拟的VaR计算 ***
历史模拟法(英文简称Hs)作为一种常用于VaR估值的 *** ,主要特点是对市场因素未来变化的概率分布并未做过多假设,只利用市场因素的历史变化来构造未来投资组合盈亏的概率分布。在给定置信度(95%,99%)的情况下,利用分布函数找出频数分布中占到5%、1%的损失临界值,以此作为VaR值。历史模拟法步骤如下。
1)以历史模拟法来估算I项资产未来一天的风险植的程序。
步骤一,选取过去N+1天第I项资产的价格作为模拟资料;
步骤二,将过去彼此相邻的N+1笔价格资料相减,就可以求得N笔该资产每日的价格损益变化量;
步骤三,步骤二代表的是第I项资产在未来一天损益的可能情况(共有N种可能情形),将变化量转换成报酬率,就可以算出N种的可能报酬率。
步骤四,将步骤三的报酬率由小到大依序排列,并依照不同的信赖水准找出相对应分位数的临界报酬率。
步骤五,将目前的资产价格乘以步骤四的临界报酬率,得到的金额就是使用历史模拟法所估计得到的风险值(VaR)。
2)实证分析。
以伦敦市场上的期铝为例,选取2007/7/19~2009/11/18日共592个数据,数据来源为Wind资讯金融数据库。市场收益率采取对数日收益率的形式,公式为:rt=ln(pt)-ln(pt-1)。按照历史模拟法的计算步骤,估计的向前一步预测在不同置信度下的市场风险价值计算结果如图9.20所示。
图9.20 计算结果
(3)两种度量 *** 的比较
一般情况下,从失败天数与失败率来看,GARCH模型能更好地刻画股市收益率的变动。从计算的VaR值来看,Hs法明显比GARCH模型下高估了风险。VaR *** 是在假设正常市场条件下对市场风险进行估算。
在估算结果的可靠性方面,Hs法过于直接依赖历史数据。因此,当选取的考察期没有代表性时,则Hs估算出的VaR值不能很好地反映市场风险。后种 *** 虽然也依赖于考察期的历史数据,但后果不如前者那么严重。但是Hs法简便、易懂,最容易被人理解和运用,而后种 *** 则需要一定的概率统计和金融衍生工具的背景知识。
总之,GARCH模型在VaR的测量中更具有准确性、灵活性等特点,在当前股市瞬息万变的情况下,已越来越为大多数人所接受,在VaR的测量 *** 中成为主流。
网站首页:期货手续费网-加1分开户(微信:527209157)
本文链接:https://52ol.cn/post/52206.html
Copyright 2012-2024 期货手续费网-加1分开户 网站地图 邮箱:diyijiaoyi@qq.com 微信:527209157 湘ICP备18014167号