当前位置:首页 » 必看 » 正文

期货因子(期货因子评估)

5.75 W 人参与  2022年12月19日 14:08  分类 : 必看  评论

什么是国债期货转换因子

直观上讲,转换因子实际上是一种债券价格,只不过这种债券价格是通过假定市场收益率为期货票面利率,且收益率曲线为水平时计算出来的对应可交割债券的债券价格。中国金融期货交易所规定,在计算某种可交割债券的转换因子时,首先必须确定该债券在国债期货到期日的剩余期限,然后以期货合约名义债券利率作为贴现率,将面值为1元的该种债券在其剩余期限内的所有现金流量折算为现值,这个现值就是该债券的转换因子。

计算 *** :在计算转换因子时,债券的剩余期限只取3个月的整数倍,多余的月份舍掉(二舍三入)。如果取整数后,债券的剩余期限为半年的倍数,就假定下一次付息是在6个月之后,否则就假定在3个月后付息,此时累计利息应从贴现值中扣掉,以免重复计算。

[img]

期货多因子回测起始时间不同效果不同

是的。

1、期货多因子在回测的过程中,为了加快回测的速度,我们只需要提前计算好在何时买入,效果会明显增加。

2、考虑到当获得数据之后不能马上给出交易信号,并且存在一些时间差,所以回测的时候延迟会在尾盘的时候清仓。

【点宽专栏】期货多因子(二)——各因子描述

一、报告简介

上期我们对于期货多因子的逻辑和用途进行了小结,我们构建期货多因子是为了刻画期货的特征,从而用于机器学习。上期我们探究了动量因子,本篇报告将把更多的因子特征呈现出来。

二、因子研究 ***

上期我们对于因子溢价构建 *** 进行了简介,本文采用同样 *** ,每天换仓,构建因子多空组合。对于多空组合收益率,我们采用总收益、年化收益、年化波动、夏普比率、更大回撤、收益回撤比、Hurst指数、5,10,20,60,120日方差比率检验来衡量。

其中,Hurst指数(见中信建投Hurst报告)以及方差比率检验(Lo, MacKinley(1988)文章)是用于刻画因子是否具有趋势性。如果因子不是随机游走,具备短期趋势,那么我们可以根据这些特征来预测未来商品指数强弱,择时构建溢价。

因子溢价构建

function [p1,p2] = factorPremium(factorMat,retMat,order)

%% 参数说明

% factorMat:因子矩阵

% retMat:收益率矩阵

% order:true/false,正序或反序

% 返还30%多空和50%多空

%%

[tradeDate,~] = size(retMat);

p1 = nan(tradeDate,1);

p2 = nan(tradeDate,1);

for i=1:tradeDate

factor = factorMat(i,:);

ret = retMat(i,:);

d = quantile(factor,0.3);

u = quantile(factor,0.7);

short = mean(ret((factor=d)(~isnan(factor))));

long = mean(ret((factor=u)(~isnan(factor))));

if order

p1(i,1) 

= long-short;

else

p1(i,1) = short-long;

end;

d = quantile(factor,0.5);

u = quantile(factor,0.5);

short = mean(ret((factor=d)(~isnan(factor))));

long = mean(ret((factor=u)(~isnan(factor))));

if order

p2(i,1) 

= long-short;

else

p2(i,1) = short-long;

end

end

p1 = ret2tick(p1);

p2 = ret2tick(p2);

figure

plot([p1,p2])

legend('3-7','5-5')

xlim([1,tradeDate])

end

因子评价

function record = factorEvaluation(retIndex)

record = zeros(1,10);

n = length(retIndex);

retPer = tick2ret(retIndex);

record(1) = retIndex(end)-1; % 总收益

record(2) = retIndex(end)^(252/n)-1; % 年化收益

record(3) = std(retPer)*sqrt(252); % 年化波动

record(4) = record(2)/record(3); % 年化夏普

record(5) = mdd(retIndex); % 更大回撤

record(6) = record(2)/record(5); % 收益更大回撤比

mid = HurstCompute(retPer(2:end)); % Hust指数

record(7) = mid(1);

[~,~,record(8)] = vrt_full(tick2ret(retIndex),5); % 方差比率检验5日

[~,~,record(9)] = vrt_full(tick2ret(retIndex),10); % 方差比率检验10日

[~,~,record(10)] = vrt_full(tick2ret(retIndex),20); % 方差比率检验20日

[~,~,record(11)] = vrt_full(tick2ret(retIndex),60); % 方差比率检验60日

[~,~,record(12)] = vrt_full(tick2ret(retIndex),120); % 方差比率检验120日

end

三、各类因子评价

(1)动量因子

这里动量因子是衡量现在价格与均线价格偏离程度,即商品趋势性衡量,上期报告已有较为充分的描述,公式为:

图1:20日趋势动量因子

(2)时间序列动量因子

时间序列动量因子与动量因子稍有区别,为过去N日商品总收益率,其衡量的是总趋势性,而非短期偏离均线的趋势,运用也较多。当某些技术指标被广泛接受时,会产生自我实现的预期。表现较好的时间序列动量因子有60日和120日。

图2:60日时间序列动量因子

图3:120日时间序列动量因子

( 3)偏度因子

偏度因子能够衡量商品期货的强弱程度,因为大单拉动趋势,小单反向操作时,会产生较高的偏度,因此偏度能够较好的捕捉人们交易行为,此外,偏度因子还代表着商品期货的博彩性质,偏度大的商品期货吸引更多资金前来对赌。我们采用的是过去N日收益率偏度来衡量,其中表现较好的为10日、20日、60日偏度因子。

图4:10日偏度因子

图5:20日偏度因子

图6:60日偏度因子

(4)其他因子

我们还总结了其他一些因子,包括流动性因子、资金流向因子、振幅因子、基差因子。

图7:流 动性因子

图8:资金流向因子

图9:振幅因子

图10:基差因子

四、综合评价

下面是各因子溢价的表现,同时我们还用Hurst指数和方差比率检验的t值来衡量因子趋势的筛检情况。大部分因子的短期趋势都较为明显,如果小资金操作,可以考虑每5天或者10天就重新学习一下特征,构建组合,从而降低回撤。

表1:各因子表现汇总

表2:因子趋势性衰减与Hurst指数

网站首页:期货手续费网-加1分开户(微信:527209157)

本文链接:https://52ol.cn/post/52272.html

期货因子  

本站福利推荐!!!

正规期货账户开户!交易所手续费加1分(+0.01元),无条件!无资金手续费要求,享受手续费加1分!

期货开户微信:527209157

或扫描下方二维码添加微信

<< 上一篇 下一篇 >>

Copyright 2012-2024 期货手续费网-加1分开户 网站地图 邮箱:diyijiaoyi@qq.com 微信:527209157 湘ICP备18014167号